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Stability of natural convection in a vertical slot 

By CHARLES M. VEST A N D  VEDAT S. ARPACI 
Department of Mechanical Engineering, The University of Michigan, 

Ann Arbor, Michigan 

(Received 9 March 1968 and in revised form 17 October 1968) 

The stability of natural convection of a viscous fluid in a vertical slot having 
isothermal side walls of different temperatures is investigated analytically. Both 
the conduction and boundary-layer regimes are found to be unstable with re- 
spect to stationary disturbances in the form of multicellular secondary flows. 
Theoretical predictions of the critical Rayleigh number and of the form of the 
secondary flow are verified by experimental measurements. 

1. Introduction 
Natural convection in a slot of finite height was first investigated analytically 

by Batchelor (1954). It was concluded that at  low Rayleigh numbers heat is 
transferred across the slot primarily by conduction. At higher Rayleigh numbers, 
however, the existence of a new regime consisting of a thin boundary layer 
around an isothermal core was suggested, with convection the predominant 
mode of heat transfer. Hereafter these will be referred to as the conduction rkgime 
and the boundary-layer rkgime, respectively. Interferometric temperature 
measurements, performed with air by Eckert & Carlson (1961) and with carbon 
dioxide gas by Mordchelles-Regnier & Kaplan (1963), confirmed the existence 
of two such flow regimes; however, in the boundary-layer regime a vertical 
temperature gradient was observed in the core. The same behaviour was found 
in high Prandtl number fluids by Elder (1965), who measured the velocity field 
as well as the temperature field. In addition, Elder discovered a multicellular 
secondary flow which is presumably due to the type of instability considered in 
this paper. 

The stability of natural convection in the conduction regime was first con- 
sidered by Gershuni (1953), who obtained highly approximate curves of neutral 
stability for the case of stationary disturbances. Recently this work has been 
extended by Birikh (1967) and by Rudakov (1967). Ostrach & Maslen (1961) 
discussed the stability of the same flow with respect to travelling waves of the 
Tollmien-Schlichting type but did not present a complete solution. However, 
the instability of this flow with respect to travelling waves of very lmg wave- 
length was shown in the thesis of Yuan (1966). 

To date, the stability of the boundary-layer regime has not been treated 
analytically; also, no direct experimental verification of the instability of the 
conduction regime has been published. The primary purpose of this paper is to 
report an investigation into these aspects of the problem. 
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Approximate formulations of both regimes of natural convection in tall, 
narrow slots are presented. The linearized equations governing small disturb- 
ances of these flows are derived and an appropriate extension of Squire's theorem 
is given. The analysis is confined to consideration of instabilities in the form of 
cellular secondary flows. Through the use of Galerkin's method curves of neutral 
stability and secondary-flow stream patterns are determined for each regime. 

The theoretical results are qualitatively verified by experimentation for two 
configurations, one in the conduction regime and one in the boundary-layer 
r6gime. This is accomplished by simultaneously measuring the wall temperatures 
and taking streak photographs of the flow. 

2. Base flow 2.1. Formuhtion 

Consider the steady two-dimensional natural convection of a viscous fluid in the 
slot depicted in figure 1. If the Boussinesq approximation is made, the equations 

FIGURE 1. Vertical slot. 

which govern this motion can be written as 
DU l a p i  
Dt pax 

~ = + gyT' + vV2U, 

DV 1 apt 
~ = _ _  ay + vv2v ,  Dt 

DT' 
___ = K V ~ T ' ,  
Dt 
au av -+- = 0, ax ay 
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where the fluid properties Y, y and K are assumed to be constant and where p' and 
T' are the deviations of pressure and temperature from their values at the 
vertical centre plane of the slot. 

For large aspect ratios h = H/d B 1,  an approximate formulation valid far 
from the ends is obtained by assuming the motion to be parallel, U = U (  Y ), 
V = 0. In  terms of the dimensionless variables u = U/(v /d ) ,  p = p ' / ~ ( v / d ) ~ ,  
0 = (T - Tm)/AT, x = X / H  and y = Y/d ,  equations (1)  to (4) then become 

-=-go+- h, 
a2u 

aY2 "1 ax 

ao h a2o 
u z  = ; ([a.e/hZ] +$) , 

where 3 = gyATdS/v2 is the Grashof number, CT = V / K  the Prandtl number and 
T, the temperature at  the vertical centre plane. 

Since u = u ( y ) ,  (5) and (7) indicate that ao/ay is a function of y only; hence if 
(l/hv) @ 1, equation (6), as pointed out by Elder (1965), implies that the dimen- 
sionless temperature gradient, a@/& = ph, is independent of x. The temperature 
field must then be of the form 

0 = T ( y ) + p h x ,  (8) 

where ,8 is a constant. Since the walls are isothermal, a solution of the form (8) 
is strictly valid only a t  x = 0. 

On the basis of these considerations, the governing equations reduce to 

and 

~ + ST = - px + 
dY2 

d2u - 

1 d @  pu=- - ,  v dy2 

which are subject to the boundary conditions 

and to the continuity condition 

u d y  = 0. r: 
1 = + y  

(9) 

The present analysis provides no means for evaluating p since this requires a 
two-dimensional study. Reference is made instead to  the experimental investiga- 
tions mentioned in the introduction. These indicate, for both high and low 
Prandtl number fluids, that the temperature gradient in the vertical centre plane 
of the slot increases, with increasing Rayleigh number, from a value of zero in 
the conduction regime to an asymptotic value of about 0.5/h in the boundary- 
layer rkgime. Accordingly, (9)-( 12) are next solved using these values for p. 

1-2 
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2.2. Conduction rkggime (,4 = 0) 

- The solution of (9)-( 12) is simply 
T = y, 

or 

where = gyATd2/v. This solution was first presented by Batchelor (1954). 

2.3. Boundary-layer rt5gime (p = 0*5/h) 

It is now convenient to combine ( 9 )  and (10) in the form 

d4u 
~ + 4m4u = 0, m4 = 4/39?, 
dY4 

- 
with u ( ? & )  = 0 ,  T ( + i ) =  -ti, (17) 

where 9 = 3cr is the Rayleigh number. The corresponding temperature and 
velocity profiles are readily found to be 

sin (my) cosh ( m y )  + cos ( m y )  sinh ( m y ) ]  ( 1 8 )  

tan ( im) 
tanh (gm) 

cos ( m y )  sinh ( m y )  +sin ( m y )  cosh ( m y ) ] ,  ( 1 9 )  and 

sin (&m) cosh ( im)  + cos (&m) sinh (m) ] ) - '  . (20) 

These solutions are essentially those given by Elder (1965) and agree quite 
well with his measurements a t  the centre of the slot (x = 0). This agreement is 
in accord with Gill's (1966) remarks. 

3. Stability analysis 
3.1. Formulation 

Following the usual approach of the linearized theory of hydrodynamic stability 
the perturbations 

} 121) 
u = ;li+EU', 2, = E d ,  w = E W I ,  

T=T+eT '  and p = j i + ~ p '  

are introduced into the governing equations. Here bars indicate base flow 
quantities and E is a small constant parameter. The resulting system accepts 
solutions of the form 

q' (x, Y, 2 ,  t )  = q (Y) exp {i (ax + Pz - act)}, (22) 

whose real parts are considered to have physical significance and which may be 
Fourier components of disturbances of more general structure. The wave- 
numbers, a and j3, are real so that the solution remains bounded as x and y become 
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infinite. The wave speed, c, is in general complex. In terms of (22) the disturbance 
equations are 

(23) 

(24) 

(25) 

(26) 

u = v = w = T = O  at y =  2' 2 ,  (27) 

ia (U - C) u + (DU) V =  - iap  + ( 1  /S) ( ( 0 2  - a2 - p 2 )  21 + T >, 

ia (Z - C )  v = - Dp + ( l/S) ( D2 - a2 - p 2 )  V ,  

ia (U - c )  w = - ipp + ( 1 /3) ( 0 2  - a2 - p) w, 

ia (U - C )  T + (DF ) v = ( l/a) (D2 - a2 - p2) T, 

where D denotes differentiation with respect to y. It has been assumed that the 
thermal conductivity of the walls is much greater than that of the fluid. Velocities 
are referred to u = gyATd2/v,  lengths to the slot width d ,  temperatures to AT, 
and pressures to p v 2 .  This scheme of non-dimensionalization brings out the role 
of the Grashof number as a Reynolds number for the base flow and that of the 
Rayleigh number as the corresponding PBclet number. 

Squire's (1933) theorem can be extended to apply to this problem by noting 
that the transformations 

N 

ZZ = au+pw, j%= p 3  
,ij = 21, 6i2 = a2 + p2, 

Z3= a 3  6T = aT, 
G=&, c " = C  

reduce the system (23)-(27) to that of an equivalent two-dimensional problem 
for which @ < 2?. Hence it is sufficient to consider only two-dimensional dis- 
turbances in determining the critical state of neutral stability. 

The absence of a preferred direction for wave travel suggests the possibility 
of the occurrence of a stationary instability, and the multicellular secondary 
flows and temperature fields observed by Elder (1965) and Mordchelles-Regnier 
& Kaplan (1963), respectively, provide experimental evidence of such modes. 
It will later be proved, under certain restrictions, that the wave speed, c, of the 
disturbance must in fact be zero at  neutral stability. The analysis is therefore 
restricted to this case. 

Upon introduction of a stream function 

@' = $5 (Y 1 exp {ia (x - ct)}, (28) 

(29) 

(30) 

T"-a2T+i~W(T'$-TiT) = 0, (31) 

$(-t.$) = #'(F+) = T( _+&) = 0. ( 32) 

Equation (30) is the Orr-Sommerfeld equation, which is coupled with the thermal 
disturbance equation (31). Such a system was first given by Gershuni (1953). 

such that 
and 

the two-dimensional form of (23)-(27) can be reduced, for zero wave speed, to 

u = (04) exp {ia (x - ct)} v = - ia$ exp {ia (x - ct)}, 

- 2a2$" + a*$ + ia3 (a%$ + Ti"$ - Ti$") + T ' = 0, 
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3.2. Solution 

The eigenvalues of the system (30)-(32), which specify the states of neutral 
stability, form a relationship, f ('3, (T, a) = 0,  which must now be determined. 
Since the non-self-adjointness of the differential system precludes a classical 
variational formulation, another approximate solution technique, the Galerkin 
method, is used, largely because of its simplicity, Accordingly, the disturbance 
stream function and temperature are expanded as 

N 

N 

It= 1 
T =  C bnTn, (34) 

where +, and T, individually satisfy the boundary conditions (32), and (30) and 
(31) are orthogonalized with respect to 4 ,  and Tn: 

where L, and L, represent the linear operators of (30) and (31) respectively. 
Because the disturbance boundary conditions are symmetric and the base 

flow under consideration is antisymmetric, the solutions of the disturbance 
equations are expected to have simple symmetry. Yet inspection of (30) and (31) 
indicates that  since U and are odd functions of y the solutions cannot be solely 
even or solely odd functions of y. However, solutions of the form 

4 = cDe+ia0, T = ~ ~ + i 7 , ,  (37) 

or #J = Q0+iQe, T = ~ , + i 7 ~ ,  ( 38) 

where ae and 7, denote real even functions of y and a,, and 70 denote real odd 
functions of y, display symmetry and are consistent with the disturbance 
equations. It is immaterial which of these forms is considered. It can be proved 
(see appendix) that, for solutions of this form, the real part of the wave speed 
must be zero. 

The function 9, which must vanish along with its first derivative a t  the 
boundaries, is expanded in terms of the solutions of the characteristic value 
problem 

These functions, chosen somewhat arbitrarily and largely for reasons of sim- 
plicity, can be written in normalized form as 

(39) f i V  = a"ft f (  k +) = f ' (  5 +) = 0. 

and 

(40) 

(41) (m = 1, 2 , .  . .), 
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where A, and pn, are roots of 

tanh ( 4 2 )  + tan (h/2) = 0 and (42) 

This orthogonal set of functions has been tabulated and discussed by Harris & 
Reid (1958) and Reid & Harris (1958). 

T, which must satisfy only two boundary conditions, is expanded in terms of 

coth (p/2) - cot (,u/2) = 0. 

cos,(y) = cos(p,y) and sin,@) = sin(~,y), (43) 

where pm = (2m- 1)n and K, = 2m7r (m = 1,2,  ...). (44) 

In accordance with the aforementioned symmetry considerations, the solution 
of the system (30)-( 32) is expanded as 

xll x21 * xNl 

x12 x 2 2  * x N 2  

X 2 N  * xNN 

N 

n= 1 
T (Y) = C [dn sin, (Y) + ien Cosn (Y)I, (46) 

where u,, b,, d, and en are real constants. Substitution of these series into (30) 
and (31) and application of the orthogonalization criteria (35) and (36) yield a 
secular equation which can be represented as 

= 0. (47) 

I,, = (cask I cos,) -a2(c0sm I cos,), 

L,, = (cos, I 5 I cos,), 

J,, = (S,l T i f  I sin,), 
K,, = (sink I sin,) - a2 (sin, I sin,) , 

(49) 
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I+' f m  (Y) hn (Y) (y) dy. 
- B  

Details of the solution of the secular equation (47) are presented in the next two 
sections. 

3.3.  Conduction riggime 

Inspection of the existing literature reveals that natural convection in a slot of 
aspect ratio between 10 and 100 is in the conduction regime if the Rayleigh 
number is less than about 3000. The neutral stability curve for such flows is 
determined by solving the secular equation (47) with (13) and (15) as the base 
flow. All inner products in the determinant were integrated exactly. The zeros 
of the determinant were found by searching the (9, a)-plane using a numerical 
interval-halving technique. These calculations were carried out a t  The Univer- 
sity of Michigan Computing Centre. 

0 1 2 7 4 5 

a 

FIGURE 2. Neutral stability curve for the conduction r6gime. 

The eonvergence of the method was investigated by performing computations 
with secular determinants of order 4 ,8  and 12. The order of the determinant was 
increased in steps of 4 so that equal numbers of approximating functions for the 
real and imaginary parts of both the disturbance stream function and tempera- 
ture were always considered. This avoided artificial weighting of the disturbance 
momentum or energy equation. The change in the critical Grashof number as 
the order of the determinant is increased from 8 to 12 is 3.2 yo. This procedure 
was repeated for various Prandtl numbers between lo-* and lo3, and separately 
for CT = 0. The variation of the critical Grashof number with the Prandtl number 
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was found to be less than 0.7 yo. Hence the neutral stability curve for stationary 
disturbances of the conduction regime is presented as a single curve in the 
(3,  a)-plane (figure 2). The critical Grashof number is 7880 a t  a wave-number of 
2.65. 

3.4. Boundar y-la y er rdginze 

The lowest value of 9 for which the boundary-layer regime exists in a given slot 
is not in general known; however, inspection of previously cited references 
reveals that this limiting value is about 8 x lo4 for aspect ratios between 10 and 

\ 

1 2 3 4 5 

a 
FIGURE 3. Neutral stability curves for the boundary-layer r6gime. 

100. The neutral stability curve for a flow in this regime is determined by solving 
the secular equation (47) with the appropriately non-dimensionalized form of 
(18) and (19) as the base flow. The solution of this problem, although formally 
identical to that of Q 3.3, requires a somewhat different numerical procedure. 
This is because the base flow is now a function of a / ( H / d ) .  All inner products 
were evaluated by numerical integration and the eigenvalues were determined 
by searching the (92, a)-plane for zeros of the secular determinant with fixed values 
of cr and H/d.  Convergence studies were carried out using determinants of order 
4, 8, 12 and 16 for various values of CT and H/d .  The convergence in these cases is 
not as rapid as in the conduction rhgime; however, the maximum change in 
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critical Rayleigh number as the order of the determinant is increased from 12 to 
16 is only about 3 yo. 

In figure 3 neutral stability curves are presented for various values of v and 
H/d.  In the range of aspect ratios considered here, attempts to obtain solutions 
with moderate sized determinants were not successful for Prandtl numbers 
between 1 and 25. 

4. Secondary flow 

is represented by 
The real, and physically significant, part of the complex stream function (28)  

$’ = Z [a,%?, (y) cos (ax) - b, 9, (y) sin (ax)]. (50) 
71= 1 

The coefficients in (50) are determined, with respect to an arbitrary a,, through 
the use of (47). The disturbance stream pattern evaluated in the neighbourhood 

FIGURE 4. Streamline patterns for the conduction r6gime. 99 = 7877: (a)  disturbance; 
( b )  total flow, B = 0.1. 
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of the critical state of the conduction regime is displayed in figure 4 (a).  An analo- 
gous pattern for the boundary-layer regime (9 = 3-12 x 105, Hld = 20, cr = 1000) 
is displayed in figure 6 (a). 

I 

p', ! 0.9 

11 

FIauRE 5 .  Streamline patterns for the boundary-layer r6gime. 9 = 3.12 x lo6, H/d = 20, 
CT = 1000: (a )  disturbance; (b )  total flow, 8 = 0.1. 

To provide for comparison with experimental flow visualizations, the disturb- 
ance and base stream functions are normalized to maximum values of unity and 
superimposed as 

with e arbitrarily assigned the value 0.1. The resulting stream patterns are dis- 
played in figures 4 (b) and 5 (b ) .  

$ = P . + E 1 C r ' ,  (51) 
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5. Experiment 
A slot formed by a rectangular plexiglass frame bounded by aluminium side 

walls was constructed. Each side wall also formed one side of a baffled chamber 
through which water, used to  heat or cool the wall, was circulated. The dimensions 
of the slot were varied by changing the plexiglass frame. Twelve sheathed copper- 
constantan thermocouples were imbedded in the aluminium plates. Their outputs 
were monitored by a printing recorder and measured with a precision potentio- 
meter. Further details are given by Vest (1967). 

0-71) contained in a slot 
of dimensions H = 25 in., d = 0.75 in. and B = 4.5 in., where B is the depth in 
the direction normal to  the flow. To visualize the motion, a small amount of 
cigarette smoke was introduced at  the top of the slot. The smoke particles were 
entrained by the fluid and were made visible by illuminating a vertical plane, 
approximately Qin. deep, in the centre of the slot. The wall temperature 
difference was very slowly increased and the onset of cellular motion was 
observed. 

The critical Grashof number, assumed to correspond to  the first cell formation 
t.0 be observed far from the ends of the slot, was found to be 8700 & 10% with a 
corresponding wave-number of about 2.74. The error margin indicated for the 
critical Grashof number is somewhat subjective since it is largely limited by the 
visualization process rather than the quantitative measurements. Figure 6 (a) ,  
plate 1, is a photograph of the cellular pattern a t  a Grashof number which is 9 yo 
in excess of the critical value. These cells may be compared with the one 
in figure 4 (b )  . 

The boundary-layer regime was established in a silicone oil, DC 200/100 (a. g 
900), contained in a slot of dimensions H = 25 in., d = 1.25 in. and B = 4.5 in. 
This experiment corresponds to the analysis for Hld = 20, B = 1000. The motion 
was visualized by suspending small aluminium particles in the fluid and 
illuminating a vertical plane. The critical Rayleigh number was found to be 
3.7 x lo5* 10% with a corresponding wave-number of about 3.5. It may be 
noted that while the critical Rayleigh number is in reasonable agreement with 
the theoretical prediction of 3.12 x lo5, the wave-number is considerably different 
from the predicted value of 1-85. 

Figure 6 ( b ) ,  plate 1, is a photograph of a cell a t  a Rayleigh number which is 
20% in excess of the critical value. This cell may be compared with that of 
figure 5 (b)  . 

The conduction regime was established in air ((T. 

6. Discussion 
It is concluded that the natural-convective flow in a vertical slot is unstable 

with respect to certain stationary modes of disturbance, which have been 
analytically investigated and experimentally observed. This phenomenon is 
rather unique in that the stationary instability, which is made possible by the 
antisymmetry of the flow, occurs in the plane of a base flow, unlike the classical 
cellular instabilities such as those of Benard, Taylor and Gortler. A consequence 
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of the presence of the base flow is the tilting of the cells with respect to the walls 
of the slot. 

After the analysis of the conduction regime had been completed, a closely 
related work by Birikh (1967) was published in English translation. In  it is 
reported an analytical study of the eigenvalue spectrum for disturbances in the 
conduction r6gime of a fluid with zero Prandtl number. The lowest eigenvalue 
agrees with the critical Grashof number of the present study to within 0-7%, 
even though a different set of approximating functions is utilized in a Galerkin 
analysis. More recently this study has been extended by Rudakov (1967), who 
considered the conduction regime for the Prandtl number range 0-01 < B < 10. 
The critical Grashof number was found to be a weak function of B, deviating 
from our value by f 7 yo in the centre of this range, but asymptotically approach- 
ing it  a t  either end. The weakness of the u dependence suggests that the buoyancy 
forces play only a minimal role in the destabilization of the flow. This interpreta- 
tion was substantiated when the limiting case of zero Prandtl number was 
considered. In  this case, the system of disturbance equations reduces to the 
classical Orr-Sommerfeld equation with no buoyancy force term. The corre- 
sponding critical Grashof number is 7932, which differs from the value reported 
above by only 0.7 yo. In the boundary-layer regime, however, the Prandtl 
number plays a dual role, appearing in the parameter m which determines the 
base flow, as well as in the Rayleigh number which appears explicitly in the dis- 
turbance energy equation. Consideration of the results shown in figure 3 reveals 
that the critical Grashof number for this regime exhibits a strong dependence 
on B in addition to that on m. This unanticipated result implies a fundamental 
difference between the destabilization mechanism in the conduction regime and 
that in the boundary-layer r6gime. The former appears to be purely hydro- 
dynamic while the latter appears to involve the thermal buoyancy force. This 
interpretation was further supported by introducing the boundary-layer rkgime 
base velocity profile into the Orr-Sommerfeld equation alone, with the buoyancy 
force term excluded. No neutrally stable states were found in the vicinity of those 
presented in figure 3, although the conduction regime results were reproduced 
when the Prandtl number was small (m + 0). 

In general, secular determinants of only moderate order were required for 
convergence to the critical eigenvalues within a few percent. This is not the case, 
however, for the boundary-layer regime in slots of aspect ratio less than 50, for 
which solutions were not obtainable with Prandtl numbers between 1 and 25. 
A t  this stage, this difficulty appears to be of numerical origin, although it may be 
noted that in this range the transition from the conduction to the boundary- 
layer regime occurs and the assumed base velocity and temperature profiles must 
be in error. At lower values of B the solution for the boundary-layer regime 
approaches that for the conduction regime, as expected. 

The experimental results for the conduction regime were in better agreement 
with the analysis than were those for the boundary-layer r6gime. This may well 
be due to the more approximate nature of the base solution for the boundary- 
layer regime. 
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Appendix 

the solutions, 9 and T, are of the form (37) or (38). 

complex wave speed c are 

It will now be proved that the real part of the wave speed, c,, must be zero if 

The equations and boundary conditions governing a small disturbance with 

$Iv - 2a2$" + a4$ + i a9  (U"$ - (U - c )  ($" - a2$)) + T' = 0, (A1) 

~ ~ - a 2 ~ + i & ( P $ -  (u-c)T)  = 0, (A 2). 

$(+Q) = $'(+Q) = T(+$) = 0, (A 3) 

where U ( y )  = - U ( - y ) ,  T(y) = -F(-y) .  (A 4) 

Equations (A 1) and (A2) are multiplied respectively by $* and T *, the complex 
conjugates of 9 and T, and integrated over [ - Q, + Q]. Suitable integrations by 
parts and utilization of conditions (A 3) and (A 4) yield 

and 

(A 6) 
For the particular case in which $ and T are of the form (37) the following 
integrals are obtained: 

and 

Using (A7)-(A9), equations (A5) and (A6) can be rewritten in terms of their 
explicit real and imaginary parts. The imaginary parts of (A5) and (A6) are 
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respectively 

and 

Since both of these integrals are positive definite, it  is necessary that 

cp = 0. (A 12) 

The same conclusion is obtained if solutions of the form (38) are considered. 
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FIGURE 6. Streak photographs of the secondary flow: (a)  conduction dgirno, 3 = 9500, 
H/d = 33, c = 0.71 ; ( b )  boundary-layer rAgime, 2 g 4.5 x lo5, H / d  = 20, c 900. 




